博客
关于我
916. Word Subsets
阅读量:432 次
发布时间:2019-03-06

本文共 2056 字,大约阅读时间需要 6 分钟。

We are given two arrays A and B of words.  Each word is a string of lowercase letters.

Now, say that word b is a subset of word a if every letter in b occurs in a, including multiplicity.  For example, "wrr" is a subset of "warrior", but is not a subset of "world".

Now say a word a from A is universal if for every b in Bb is a subset of a

Return a list of all universal words in A.  You can return the words in any order.

 

Example 1:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["e","o"]Output: ["facebook","google","leetcode"]

Example 2:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["l","e"]Output: ["apple","google","leetcode"]

Example 3:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["e","oo"]Output: ["facebook","google"]

Example 4:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["lo","eo"]Output: ["google","leetcode"]

Example 5:

Input: A = ["amazon","apple","facebook","google","leetcode"], B = ["ec","oc","ceo"]Output: ["facebook","leetcode"]

 

Note:

  1. 1 <= A.length, B.length <= 10000
  2. 1 <= A[i].length, B[i].length <= 10
  3. A[i] and B[i] consist only of lowercase letters.
  4. All words in A[i] are unique: there isn't i != j with A[i] == A[j].

 

Approach #1: String. [Java]

class Solution {    public List
wordSubsets(String[] A, String[] B) { int[] init = new int[26], temp; for (String b : B) { temp = counter(b); for (int i = 0; i < 26; ++i) { init[i] = Math.max(init[i], temp[i]); } } List
ret = new ArrayList<>(); for (String a : A) { temp = counter(a); int i = 0; for (i = 0; i < 26; ++i) { if (temp[i] < init[i]) break; } if (i == 26) ret.add(a); } return ret; } public int[] counter(String b) { int[] temp = new int[26]; for (int i = 0; i < b.length(); ++i) { temp[b.charAt(i)-'a']++; } return temp; }}

  

Reference:

 

转载地址:http://gftuz.baihongyu.com/

你可能感兴趣的文章
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>